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Simple fluids with complex phase behavior
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We find that a system of particles interacting through a simple isotropic potential with a softened core is able
to exhibit a rich phase behavior including: a liquid-liquid transition in the supercooled phase, as has been
suggested for water, a gas-liquid-liquid triple point, a freezing line with anomalous reentrant behavior. The
essential ingredient leading to these features resides in the presence of two effective radii in the repulsive core.
The potential investigated appears appropriate for a class of spherical polymeric micelles recently investigated.
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Predicting the phase behavior for a given interparticle
teraction is a central problem in statistical physics. The is
is relatively well assessed for pure systems interac
through a variety of radially symmetric pair potentials, su
as hard-spheres, Lennard-Jones systems, inverse-powe
tentials, etc. The complexity of the phase diagram increa
for pure substances characterized by complex interact
depending on the intermolecular orientation, e.g., wa
C,S,Ga, Se,Te,I2 ,Cs,SiO2, etc. @1#. For the above material
somewhat exotic features appear in the phase diagram,
as fluid-fluid or liquid-liquid transitions, polyamorphism, an
multiple crystalline structures. Exploring the possibility th
simple fluids interacting through suitableisotropicpotentials
may exhibit similar behaviors represents a major challen
The importance of such model systems is not limited to p
viding a better understanding of the components of the in
action responsible for the above phase behaviors. They
also represent an adequate description for systems hav
completely different nature: the suspensions of colloidal p
ticles dispersed in a fluid medium. In fact, in these syste
through the experimental control of particle and solve
properties@2#, it is possible to generate ‘‘nonstandard’’ e
fective pair interactions similar to those investigated in t
Rapid Communication.

Such features of the phase diagram as fluid-fluid tra
tions, polyamorphism, etc. may be related to the competi
between expanded and compact structures. This suggest
the potential should possess two equilibrium positions@3#.
The most obvious form with such a feature is one with t
wells. Such potentials were shown to give rise to waterl
thermodynamic anomalies, though the presence of a
critical point could not be directly observed@4#. Another
form of interparticle interaction which could produce diffe
ent equilibrium positions is that in which there is a region
negative curvature in the repulsive core: these so-ca
softened-core potentials were proposed by Hemmer and
@5# who argued that they might produce an additional tran
tion, if a first already exists. Recently, through a mix
numerical–mean field type calculation, it was found tha
potential consisting of a softened-core plus an infinite ra
van der Waals attractive term may give rise to a sec
critical point @6#. Very recently, molecular dynamics simula
tion showed for a softened-core potential with an attract
well evidence of a transition between two fluid phases in
supercooled region@7#.
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The purpose of this article is to report the findings of
study of the phase behavior of a system of particles inter
ing through a potential with a softened-core and an attrac
well. Our analysis, based mainly on thermodynamically se
consistent~TSC! integral equations for fluids@8# and partly
on Monte Carlo~MC! simulations, shows the existence of
liquid-gas critical point in the stable fluid phase and of
liquid-liquid critical point in the supercooled region. Th
liquid-gas and liquid-liquid coexistence lines meet in a g
liquid-liquid triple point. Moreover, the behavior of th
freezing line, estimated through one-phase criteria@9–11#,
such as the Hansen-Verlet~HV! rule @10# and the entropic
criterion based on the analysis of residual multiparticle
tropy @11#, is consistent with the existence of multiple cry
talline structures in the solid phase. Unlike previous stud
@12,13#, we show that a microscopic theory, directly linkin
the behavior of the system to the form of the interparti
pair potential, predicts for a simple fluid the existence o
liquid-liquid critical point and of a gas-liquid-liquid triple
point.

The chosen potential has a repulsive partVrep(r ) consist-
ing of a hard core of radiusr 05s and a repulsive squar
shoulder of heighte and radiusr 152.5s, plus an attractive
componentVattr(r ) having the form of a square well o
depth 1.25e extending fromr 152.5s to r 253s @13#. To
reach a thorough comprehension of the role played by
different components of the potential we first study its pur
repulsive part, and then consider the effect of adding
attractive component.

Let us consider a system of particles interacting throu
the potentialVrep(r ). We study its structural and thermody
namical properties using the TSC Roger-Young~RY! inte-
gral equation@14#. Figure 1 illustrates the structure facto
S(k) for different densities, at a constant temperature,
calculated within the above theory and through MC simu
tions@15,16#. We note the unusual behavior of the first pea
of S(k) which, as the density increases, progressively r
and fall ~with the exception of the third peak, which grow
monotonously with the density!. This anomalous structure
factor recalls in its essential features that which is obser
in dense star polymer solutions@16#. The ‘‘rising and fall-
ing’’ of the peaks ofS(k) reflects the turning on and off
upon the density increasing, of different effective leng
scales. WhenT andr are sufficiently small, the soft core i
practically impenetrable and the particles behave as h
©2001 The American Physical Society01-1
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FIG. 1. Purely repulsive potential. Structure factors within the RY equation~solid line! and MC simulation~circles! at a reduced
temperatureT* 5kBT/e50.285 and at different values of the reduced densityr* 5rs3.
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spheres of radiusr 1. As T and r increase, more and mor
particles penetrate the soft core until this becomes scar
influent and the system is essentially equivalent to an ass
bly of hard spheres of radiusr 0. In general, the system ca
be considered a ‘‘mixture’’ of two populations of har
spheres, of radiusr 0 and r 1 respectively. The relative con
centration of the two species is fixed by the values ofT and
r. Thus, in contrast to standard simple fluids, the system
three possible length scales:r 1 , r 105(r 11r 0)/2 andr 0, and
as many indicators of structural ordering, namely, the pe
of the structure factor corresponding to the wave vect
k1 , k10, andk0, associated with these lengths.

According to the HV rule a fluid is expected to under
crystallization when the first~main! peak ofS(k) attains the
value 2.85@10#. This statement usually refers to simple flui
with a single length scale, so its extension to the ‘‘anom
lous’’ simple fluid investigated is not straightforward. Sin
in our case different length scales come into play, one ha
consider all the associated indicators of structural order
In Fig. 2 we show the loci of the points of the planeT,r for
which S(k1), S(k10), and S(k0) are equal to 2.85. The
freezing line predicted by the HV rule coincides with the li
which bounds the region where at least one of the peak
S(k) is greater than 2.85. This line shows a reentrant beh
ior ~at intermediate densities! which can be related to th
peculiar penetrability of the softened-core. In fact, the fr

FIG. 2. Purely repulsive potential. The dashed lines are the l
of points of theT,r plane whereS(k1) ~closed triangles!, S(k10)
~squares!, andS(k0) ~open triangles! are equal to 2.85. The inse
shows a magnification of the lowT-low r region; the isotherma
compressibilityxT ~thick solid line! is calculated along the isotherm
T* 50.103 (x0 is the ideal gas compressibility!.
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tion of particles penetrating the soft core increases with
density~at constantT), thus ‘‘generating’’ additional space
for the system. This effect is particularly important whe
one length scale begins to become less effective in favo
the smaller one. In these regions the phenomenon may o
compensate the general decrease, upon the density inc
ing, of the space available to the particles, thus causin
tendency of the system to become less ordered: accordin
the freezing line may have a negative derivative, i.e.,
system may undergo crystallization upon the densityde-
creasing. To this regard we note that reentrant freezing a
melting transitions originated by an ultrasoft repulsive p
potential have been observed, through MC calculations
star polymers solutions@17#; in the same work the validity of
HV rule for such systems was confirmed.

A reentrant behavior of the freezing line is also observ
in the lowT-low r region shown in the inset in Fig. 2. Here
the freezing line starts nearly vertical atr* .0.06, which
corresponds to the freezing densityrr 1

3.0.943 of a fluid of
hard spheres of radiusr 1. As r increases, the freezing lin
bends and exhibits a negative derivative. The phenome
can be associated with the very onset of the soft core p
etration which, for the reasons discussed above, has a d
dering effect on the system. Consequently, the system un
goes melting with volume contraction, as confirmed by t
fact that, in correspondence of the portion of the freezing l
having negative derivative,~i! the isothermal compressibility
exhibits an anomalous behavior suddenly increasing with
density~see the inset in Fig. 2! and~ii ! the first peak ofS(k),
which corresponds to the effective length scaler 1, undergoes
a strongly localized decrease~see Fig. 3!. These features also
occur along the extension of the freezing line towards low
temperatures, suggesting, in this case, the transition to a
ordered solid phase. The extrapolation of this line meets
T50 axis at r* .0.09, which corresponds to the close
packing of hard spheres of radiusr 1 ~occurring at rr 1

3

5A2). The above results lead us to conclude that the reg
shadowed in the inset of Fig. 2 corresponds to anexpanded
solid phase of the system.

We now investigate the phase behavior of a system
particles interacting through the full potentialVrep(r ) plus
Vattr(r ). Calculations are performed making use of t
HMSA TSC equation@a suitable combination of the hype
netted chain~HNC! equation and of the soft-mean spheric
approximation ~SMSA! equation, proposed in Ref.@18##,
which is better suited than the RY equation for interparti
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interactions including an attractive component and reduce
this for purely repulsive potentials. The phase diagram of
system is shown in Fig. 4. Two coexistence curves oc
@19#, each terminating at a critical point, denotedC1 and
C2. The critical densities and temperatures are respecti
rC1* 50.06, TC1* 51.3, and rC2* 50.77, TC2* 50.55. These
values were estimated using the rectilinear diameter rule
the scaling relationship for the width of the coexisten
curve with the nonclassical exponentb'0.325@20#. Below
TC1 the system separates into a gas and a liquid phase.
liquid phase is not unique since, belowTC2 (TC2,TC1),
separates into distinct low-density~LD! and high-density
~HD! phases. We stress that this phenomenon is cruc
related to the softened-core form of the potential. Due to
presence of the penetrable repulsive shoulder particles ca
in one of two ‘‘states’’: this is the essential feature whi
opens the possibility of liquid-liquid-immiscibility in a pur
substance.

Since the critical pointC2 is well below the freezing line
the liquid-liquid transition occurs between metastable pha
in the supercooled region of the system. This feature rec
the scenario proposed for water@3#, but in that case the
liquid-liquid coexistence line is expected to start from t
C2 point running at higher pressures asT decreases@21#. In
the system investigated, the contrary is observed, this
running at lower pressures asT decreases~see inset of Fig.
4!. This makes a new feature possible: the simultaneous
existence of three fluid phases. In fact, the gas-liquid and
liquid-liquid coexistence lines meet in a gas-liquid-liqu
triple ~GLL! point which lays in the supercooled pha
(rGLL* '0.57, TGLL* '0.53). In order to check that the met
stable states close to the critical pointC2 have a finite life-
time, we performed MC runs consisting of not less than
3108 steps, finding no evidence of structural orderi
~which suggests that pointC2 lays above the melting line o
the system!. The MC and theoretical radial distribution func
tions are in overall good agreement with each other@22#. In
principle, one cannot exclude that at such temperatures

FIG. 3. Purely repulsive potential. Three-dimensional plot
S(k1) as a function ofT* andr* .
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densities the system might undergo a glass transition. In
case, our results would be consistent with the existence
LD and HD amorphous phases@3#.

The addition of the attractive well causes a shift towa
higher temperatures of the loci of the points whe
S(k1), S(k10), andS(k0) are equal to 2.85, while their lo
cation in density remains essentially unaltered. Only a sm
portion of the lineS(k1)52.85 is visible since it lays almos
entirely in a region, corresponding approximately to the g
liquid spinodal decomposition, where the theory is unstab
At intermediate densities the freezing line predicted by
HV rule shows a very evident reentrant behavior. As sho
in the inset in Fig. 4, the freezing temperature increases
tially with pressure, then decreases in the pressure ra
2.5<P* <3.5 (P* 5Ps3/e), and eventually increase
again. We further note that the freezing line meets the liqu
gas coexistence line in a gas-liquid-solid~GLS! triple point
(rGLS* '0.29, TGLS* '0.97). For comparison we also show
in Fig. 4, the freezing line estimated through the entro
criterion. This is in reasonable agreement with HV ru
though there is a discrepancy in the intermediate region:
reentrant behavior predicted by the entropic criterion is,
fact, scarcely evident and can be appreciated only num
cally @22#. Though our estimate of the freezing line is bas
solely on one-phase criteria, its shape, with branches ha
distinctly different slopes, is consistent with the possibil
that structural changes occur in the solid state of the syst
Consequently, transitions may be possible between s
phases of the system investigated.

The results presented in this article show that a p
model system, interacting through an isotropic potential w
two characteristic radii in the repulsive core, may have a r

FIG. 4. Phase diagram in the (T,r) plane. Coexistence lines
gas-liquid ~solid line with open circles!, liquid-liquid ~solid line
with closed circles!. The closed diamonds represent the critic
points. The dashed lines are the loci of points whereS(k1) ~closed
triangles!, S(k10) ~squares!, andS(k0) ~open triangles! are equal to
2.85. The solid line with no symbols is the freezing line estima
through the entropic criterion. Inset:P,T phase diagram showing
the freezing line estimated withinHV rule ~dashed line!, the liquid-
gas coexistence line~solid line ending inC1) and the liquid-liquid
coexistence line~solid line ending inC2); the open diamonds rep
resent the triple points; pressure is given in units ofe/s3.

f

1-3



ct
th
r

les
he
e
o

of

le,
ing
.
.

-

RAPID COMMUNICATIONS

GIANPIETRO MALESCIO AND GIUSEPPE PELLICANE PHYSICAL REVIEW E63 020501~R!
phase behavior with features typical of substances chara
ized by much more complex anisotropic interactions. On
other hand, the above potential could be appropriate fo
class of spherical macromolecules. Experimental results@23#
show, in fact, that it is possible to realize polymeric micel
for which the ratio of the diffuse corona thickness to t
dense core radius is close to that of the repulsive should
hard core radii in our model system. Additional features
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the interaction may be fixed through appropriate tuning
particle and solvent properties.
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